
F L O W  O F  A R E L A X E D  G A S  IN  T H E  V I C I N I T Y  O F  

S O L I D  S U R F A C E  
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B e h a v i o r  of a po lya tomic  r e l axed  g a s  in the vic ini ty  of  a solid su r f ace  w a s  studied.  The 
case  in which the s ize  of the r e l axa t ion  zone e x c e e d s  cons ide r ab ly  the m e a n  f r ee  path be-  
tween the e l a s t i c  co l l i s ions  ( s u p p r e s s e d  exchange  of  t r a n s l a t i o n a l  and in te rna l  ene rg ies )  
was  cons ide red .  A ~ n o o t h  val id i ty  of the as)~nptot ic  expans ion  fo r  the d i s t r ibu t ion  func-  
t ion with defined a s s u m p t i o n s  wa s  indicated .  A solut ion for  the z e r o - a p p r o x i m a t i o n  equa-  
tion and boundary  condi t ions  fo r  the su r f ace  flow, based  on th i s  solut ion and g e n e r a l i z e d  
mode l  for  a d i f fus ive  g a s  r e f l e c t i o n  f rom the su r f ace  w e r e  de r ived .  The  l a t t e r  p rob lem 
was  pa r t i a l l y  studied in [1] by the Grad  me thod  and in [2] in t e r m s  o f  an a n a l y s i s  of  the 
t e m p e r a t u r e  jump.  

A k ine t ic  equat ion for  p o l y a t o m i c  g a s e s  was  obtained by f o r m a l  g e n e r a l i z a t i o n  of the Bo l t zmann  equa-  
t ion in [3] ( r e f e r e n c e  f rom [4]). Using the notat ion of  [4], we x~rrite 

d/ i  O/i Of t ~ ' , 
dt --  " ~ ' ~ -  Vi-~x = . ~ o (1~ f~" - / J J ) g J ] ~  (g,O,C~)sinOdOdtl)dV) (1) 

J ,~ , l  

The  index i de no t e s  the inner  quantum n u m b e r s  ~i 1, i 2 . . . .  } c h a r a c t e r i z i n g  the in te rna l  s tate  of  a mole -  
cule .  The  i n t e r s e c t i o n s  Iikl~ a r e  the binary, co l l i s ion  c h a r a c t e r i s t i c s .  F o r  g i j=  gii'.~ let. I..iJD ~ ~1, I''klxj ~ ~2 
and for  gij ~ g k / ' I i j k / ~  ~12, ~1 and (T12 can depend on i, j; fo r  th is  ca se  it i s  no:  o iu icul~ to g e n e r a l i z e  the 
a r g u m e n t  s. 

Usua l ly  ~l ~ 2  ~(7. Hencefor th  we d i s t ingu i sh  two ca se s :  

a) e a ~  exchange  of  t r ans l a t i ona l  and in te rna l  e n e r g i e s ,  

(h2 ~ (~ (2) 

b) s u p p r e s s e d  exchange  

~,. ~ o (3) 

We r e d u c e  Eq. (1) to a d i m e n s i o n l e s s  fo rm.  F o r  this  b e s i d e s  the n o r m a l  c h a r a c t e r i s t i c s  t e r m s  we 
in t roduced  the l i nea r  d imens ion  L, which in case  a) i s  a length,  whe re  the d i s t r i bu t ion  funct ion undergoes  
a c h a r a c t e r i s t i c  change ,  and in the case  b) L-:  (na~2)- ~. In the case  b) we obtain  

d/i, tt -- el ~ I(]~'h'  - -  ]i]J)gO[ij*~sillOdOdff)dV~ i- 
j, h',l 

i 
!-  ~" ~(]~'[~' - -  ]if.J) giffiJ~'tsiaOdOd(1)dVj ==-y-Jr + J (  ; 

j , k , l  

(4) 

e :: (naL)-  1<<1, the sign L de no t e s  the sum with r e s p e c t  to t r ans i t i ons ,  with g :: g ' ,  w h e r e a s  the sign Z' r e -  
f e r s  to t r a n s i t i o n s  with g ~ g ' .  In the case  a) ~2' i s  mul t ip l i ed  by ~- I  
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The information on the interaction mechanism of polyatomic gases  with a solid surface is usually 
confined to the accommodation coefficients and some adsorption features.  For  a simple gas a semiempir i -  
cal model of mi r ro r -d i f fus ion  reflection with different accommodation coefficients is a common approach. 
By defining the boundary conditions for (4), we use the general  functional relat ion,  but the actual calcula- 
t ions are  carr ied  out for a general ized reflect ion diffusion model.  

At the solid surface the following conditions should be fufilled: 

/,+ ::= Y, v , jh-  (5) 

where the plus sign signifies the molecules  leaving the surface,  and the minus  sign, those arr iving at the 
surface;  Vij is the linear opera tor  whose charac te r i s t i c s  will be discussed below. 

We shall seek the solution of Eq. (4) with condition (5) in the case ~ ~ 0. With the method descr ibed 
in [5] it is possible to separate the functional dependence o f f  i on ~: (due to a tedious calculation this deriva-  
tion will not be presented). The func t ion f  i, besides the t e rms ,  proportional to the powers of e, contains 
t e rms  that charac ter ize  the boundary effects and which are  multiplied by e x p ( -  e - ~ [ x - x ,  I}, where x is the 
coordinate of the point considered, while x ,  is the intersect ion coordinate of the moIecule  t r a j ec to r i e s  a r -  
riving at the point x from the surface. We introduce a local coordinate system at the surface by d i rec t -  
ing one of the axes along the normal  to the surface n. It can be shown (see [5]) that the influence of condi- 

tion (5) is concentrated in the region 

x,~ ~ ~ (6) 

This region is called thc Knudsen layer.  The presence  of a mult ipl ier  of o r d e r  exp [-xt/~] leads to 
the exponential absorption with *: - -  0 of the effect of the boundary on the distr ibution function m any fixed 
internal flow point. The presence of a ma jo r  pa rame te r  in front of the f i rs t  sum in (4) (separating the in- 
t egra l s  and sum s from the number of coll isions when the energy of the translat ion motion of the par t ic les  
does not exchange with the energy of the internal degrees  of freedom) allows us to separate the fast and 
slow p roces se s  which determine the evolution of the successive app rox ima t ions f  i for ~ 0. The explicit 
form of the zero and f i rs t  approximations of the distribution function for the surface flow were obtained 
in [6, lJ by different methods. The aim of the present  work is to find a uniformly valid expansion of the 
distribution function (for the surface flow and in the Knudsen layer) with respec t  to a small pa ramete r .  To 
do this, following [7], we introduce a perturbed coordinate 

y = ~-lx, ' (7) 

which is an argument  of the distribution function. 

By res t r ic t ing  ourse lves  to the stationary case, we write the Boltzmann equation in the form 

dt 7 e yu di -!- Ji' (8) 3y e 

where 

d.f~ _ V~ 0/~ 01: (9)  

When y takes a final value, we obtain the points of the Knudsen layer ,  when y - -  o~ (~,-- 0 with a fixed 
x n) the region of the surface flow. We seek the solution of Eq. (8) in the form 

l~ = Y~ ~"f~"~ (~, y) (10) 
71 

By inserting (10) into (8), for the successive approximations we have 

o/i (~ 
V,, ~ = Ji (/i (~ /j(0)) (11) 

0]i(1) d/t(~ 
V. ~ = J~ (h~~ I~(')) ~- J(  (h(~176 + J~ (h(l); lj(0>) dt (12) 

where Ji is the integral  of the elast ic  collisions, J i '  is  the integral  of the inelast ic  collisions. 
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Due to the l inea r i ty  and the lack  of  dependence  of  the condit ion (5) on ~ they a r e  t r a n s p o s e d  without 
changes  in the s u c c e s s i v e  a pp rox i m a t i ons .  We shall  show that the equa t ions  for  ] i  (n) with y ~ o ~  deve lops  into 
the equa t ions  for  the s u c c e s s i v e  a p p r o x i m a t i o n s  in the su r f ace  flow [6], i .e . ,  we shall  show the uni form 
val id i ty  of  the expans ion  (10). 

We in t roduce  the notat ion 

J.,: = - -v . i  (].i) s "~- Ki (]~; ]~) 13) 

whe re  

"~'t- ~ l ljgij[t)ke Sill 0 d 0 dO dYj 
jibe ~ 

Ki(/,.; /,)= ~ i]~.'l/gjii ~tsin OdOd(l)dYj 
j ,k ,e  

14) 

We r educe  Eqs.  (11) and (12) to the f o r m  

yn O'[i(m) 
O!t . . . . .  vi (h (~ _ (1)(m~ (:5) 

We can wr i t e  (15) in the in tegra l  fo rm for  V n > 0 and c o r r e s p o n d i n g l y  V n < 0 

/(m)(g)=f~(")(O)exp!--~gt_ , j + ~ e x p - - [ _  ~ ( y - - z )  dz (16) 
0 

v i 7 
fi(")(g) . . . .  i r [ u  (17) �9 : ::xp ~ -  

y 

Thefi(m)(0) a r e  se lec ted  in such a way that  the boundary  condit ion (5) is  fulf i l led.  We find the l imi t ing  va lues  
of  the i n t e g r a l s  en te r ing  (16) and (17) fo r  y ~  

,~. r (z) l- "~ " -- z)J dz 
o 

r162 (I) (m) t-~ 1 exp ~-- ~ -- z) dz 
!l 

With the subst i tu t ion z =: y t  we obtain  

0 

.:m.(,,,) 
A2 =Y I ~-----~-- exp 

1 

The in t eg rands  in these  i n t e g r a l s  a r e  cons ide r ab ly  d i f fe ren t  f r o m  z e r o  for  l a rge  y only in the reg ion  
1 - t ~  1~. Due to the m u l t i p l i e r  y,  A~ and A 2 for  y ~  tend to a l imi t ing value which is  d i f fe ren t  f rom zero�9 
A s s u m i n g  boundedness  and continui ty at an inf ini te ly  r e m o t e  point  r m and us ing the Lap lace  method  [8], 
we obtain that  for  y ~ r  

A~ -+ vi-~r (oo), A~ ~ W~r (oo) 

Hence it fo l lows that  

v i ' Oy 

By d i f fe ren t i a t ing  (15) with r e s p e c t  to y, we can show by the same  method that  a de r iva t ive  of  any 
o r d e r  off i (m) with r e s p e c t  to y a l so  t ends  to z e r o  a s  y ~ ~. If Eqs.  (11), (12) . . . . .  a r e  c o m p a r e d  by set t ing 
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0j~(m)/0y : 0 with the equa t i ons  for  the s u p e r f i c i a l  f low d e r i v e d  in [6]. we ob ta in  the  un i fo rm v a l i d i t y  of the  

expans ion  (10). 

Let  us  a n a l y z e  the  z e r o  a p p r o x i m a t i o n  (11) with the condi t ion  a t  the  b o u n d a r y  (y= O) 

i 
The l i m i t i n g  .~olution ( y ~ )  of  t h i s  p r o b l e m  i s  known: i t  s a t i s f i e s  the  equa t ion  

and i s  of the form [6] 

& (h(0>; H 0)) = 0 

=n~.~G~-7, ) T e x p  { -  '"+' 2 h T l  

w h e r e  m i s  the m o l e c u l u r  m a s s ,  Tj i s  the t e m p e r a t u r e  of  the t r a n s l a t i o n a l  d e g r e e s  of  f r e e d o m ,  T, 2 i s  the 
t e m p e r a t u r e  of the i n t e rna l  d e g r e e s  of  f r e ed om 

(18) 

(19) 

z = exp --  ~ , n = hdv  
, i 

u = 

n, u, T 1, and T 2 a r e  func t ions  of the  e x t e r n a l  c o o r d i n a t e  x.  

We c a l c u l a t e  the i n t e g r a l  

&{o) II'l~, ~ , 11 dv dy I I - - -~ , I I  V,, a,, -'- 
i 0 ( v )  

?t 1$ 

1 0 (v )  i 0 ( v )  

(2o) 

(21) 

The  s y m m e t r y  of d i r e c t  and i n v e r s e  c o l l i s i o n s  p r o v i d e s  the  r e s u l t  known f rom the p r o o f  of the H 
t h e o r e m  [4], 

I ~ 0 {22) 

F u r t h e r m o r e  

, ( v )  

F r o m  (11) and the cond i t i ons  of  no - f l ow  at the s u r f a c e , i t  f o l l ows  that  Un= 0 for  a l l  y.  T a k i n g  (19) into 
aeeoun t  we le t  y ~  in (23) 

z (v) 

We i n t r o d u c e  the no ta t ion  

</i (F'~)> = ] i ( - -  V~), h (~ = lwt%, P(qh)  = q i ( i n % - t -  l a / u , i -  1) 

w h e r e f w i  i s  a p o s i t i v e  funct ion ,  even  with r e s p e c t  to V n, and independen t  of y ,  that  s a t i s f i e s  the c o n d i t i o n s  
(18). We spec i fy  the  form of  the o p e r a t o r  Vij. T h e  r e l a t i o n  (18) l i nks  the d i s t r i b u t i o n  funct ion of  m o l e c u l e s ,  
r e f l e c t e d  f rom the s u r f a c e  (we m a r k  it with plus)  with the d i s t r i b u t i o n  funct ion of the inc iden t  (minus)  m o l e -  
c u l e s ,  and i n c l u d e s  the  i n f o r m a t i o n  on the i n t e r a c t i o n  m e c h a n i s m  of  a g a s  with the  s u r f a c e .  The  o p e r a t o r  
Vii can be r e p r e s e n t e d  in the fo rm 

/ i  

/ ~  (v;,~<o) 
(25) 
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(Pl + - ~  EHijTj- j (26) 

By taking into account  the no- f low condit ion at the s u r f a c e  and the n o r m a l i z i n g  condi t ions  of  Tij with 
r e s p e c t  to v, which can be wr i t t en  fo r  any function of  qq sa t i s fy ing  (26) 

i (v) i (Vn<0) 

(27) 

we can wr i t e  

i=o  (vn<o)  j 

(28) 

B y  ,~ubstituting PtgPi-) for  q~i in (27), we have 

~(v, 0) " J (29) 

El imina t ing  P(q~i-) f rom (28) via  (29) we f inal ly  obta in  

i (Vn<0) j " j 
(30) 

F o r  (P >O, the  second de r iva t i ve  of P with r e s p e c t  to (p i s  g r e a t e r  than ze ro ,  and consequent ly  P((p) is  
a convex function. F o r  convex funct ions  the g e n e r a l i z e d  inequal i ty  of J en t zen  is  val id:  

r~  i i qtJ (t, z) fi3j (x) dx, S q~J (t, .) P [% (x) l d~ 

< : Y t" q~J e~ 
J 

for  any qij >- 0. 

Assuming 
= 1 V 

<qz> ~ iZ I  J~ 

and c o n ~ d e r i n g  t h a t f w i  sa t i s f i e s  the condit ion (18),we obtain for  V n -< 0 

p ] < 
J 

The inequal i ty  (31) toge ther  with V n -< 0 f rom (30) g ives  

I > 0  

F r o m  (32) and (22) it fo l lows that  fo r  a]] y 

The negat ive  de f in i t enes s  of e x p r e s s i o n  [4] 

I = - 0  

f Y~(/i~~ [ln/(0) i- ll dv 

g i v e s  an equat ion f o r f i  (~ which holds  fo r  all y :  

]~ ( / y ) ;  /j(o)) _.. 0 

(31) 

t32) 

(33) 

(34) 
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From this it follows that function (19) is the unique solution for the problem (11), (18), while the pa ra -  
m e t e r s  n, U, T1, and T 2 are independent o f  y. Hence the uniqueness theorem, proven for a pure gas in [9],* 
is  general ized for the case considered. 

It should be pointed out that the assumption on the existence Offwi, which is  even with respect  to x~, 
is very important.  Physical ly this assumption implies the existence of such a gas  state near the surface in 
which the distribution of molecules  incident to and outgoing from the surface is the same. Fo r  a model of 
mi r ro r -d i f fus ion  reflection such a state is real ized in equilibrium, while for other  cases  this assumption 
should be verified, since without it the considerat ions lo se their validity. We also note that the exi stence 
of a unique solution for the zero approximation in the Knudsen layer  nar rows the scope of simulating the law 
for the interaction of a gas  with a surface and proves  the hypothesis,  put forward in [10], that the models  
Tij and f i  mus t  agree near the solid surface. 

In order  to obtain the boundary conditions for the equations of the f i rs t  approximation in surface flow 
[6],we construct  the actual model of the V.. opera tor  In [11J it was noted that the molecular  mean free path 1j 
in an adsorbed layer  depends on the internal state of the molecule  (the idea of an adsorption gas -dynamic  
laser  arose from this). Fu r the rmore ,  the short s tay- t ime of the molecules  in the adsorbed state and dif- 
ferent  relaxation rate  of translational  and internal energy leads to a known experimental  difference between 
the accommodation coefficients of translational and internal energy.  This information permi t s  us to gen- 
eral ize the diffusion law of reflection by introducing different accommodation coefficients for the internal 
and translational energ ies  of the molecules .  We consider that the distribution of molecules  reflected from 
the surface at y=  0 (i.e., for V n >0) can be written in the form 

l m \~,'2 i f muZ E i 

where 0 is the surface tempera ture ,  ~ and B are the corresponding accommodation coefficients,  n is de- w 
termined from the surface no-flow conditions. F rom (35) and solutions for the zero approximations in the 
Knudsen layer  we have 

u ~ 0, 1'1 - .7'x~ = a0 ,  T ~  = r2~ -~  6 0  (36 )  

These conditions are  s imilar  to the normal  conditions of adhesion in the dynamics  of a v iscous  liquid. 
Refinement of the conditions (36) associated with the glide and tempera ture  jump effects appears  in consid- 
er ing the subsequent approximation in which it is  required to solve the l inear inhomogeneous integrodiffer-  
ential equation (12). 

LITERATURE CITED 
s 

1. V.M. Zhdanov, "Kinetic theory of a polyatomic gas," Zh. Eksp. Teor. Fiz , 53, No. 6 (1967). 
2. J .T.  Lin and D. R. Willis, "Kinetic theory analysis of temperature jump in a polyatomic gas." Phys. 

Fluids, I__55, No. 1 (1972). 
3. C.S. Wang-Chang and G. E. Uhlenbeck, "Transport phenomena in polyatomic gases," Univ. Michigan 

Eng. Res. Inst. Report CM-681 (1951). 
4. J.O. Hirschfeld, C. Curtiss, and R. Bird, Molecular Theory of Gases and Liquids. Wiley (1964). 
5. M.O. Lutset, in: "Derivation of the boundary conditions for the continuum equations from the kinetic 

equation," in: Numerical Methods of Continuum Mechanics [in Russian], Vol. 2, No. 3, Novosibirsk, 
Computer Center, Siberian Branch, Academy of Sciences of the USSR (1971). 

6. V. N Zhigulev and V. M. Kuznetsov, "&)me problems of physical aerodynamics," in: Proceedings 
of N. E. Zhukovskii Central Aero-Hydrodynamics Institute [in Russian], No. 1136 (1969). 

7. M. Van Dyke, Perturbation Methods in Fluid Mechanics, Academic Press (1964). 
8. E.T. Copson, Asymptotic Expansions, Cambridge Univ. Press (1965). 
9. J .P .  Guiraud, "Kinetic theory and rarefied gas dynamics,nin: Rarefied Gas Dynamics, Vol. I, Acad- 

emic Press (1967). 
10. R.G. Barantsev and M. O. Lutset, "On the boundary conditions for the Navier-Stokes equations in 

* S~e also M.O. Lutset in "Formulation of the Boundary Conditions in Dynamics of a Rarefied Gas," Candi- 
date's Dissertation, Novosibirsk (1970). 

466 



11. 
a rarefied gas," Dokl. Akad. Nauk SSSR, 173, No. 5, 1021-1023 (1967). 
V. K. Konyukhov and A. M. Prokhorov, "Creating an absorption-gas-dynamic quantum generator," 
ZhETF Pis. Red., 13, No. 4, 216-218 (1971). 

467 


