FLOW OF A RELAXED GASIN THE VICINITY OF A
SOLID SURFACE

M. O. Lutset UDC 573. 32

Behavior of a polyatomic relaxed gas in the vicinity of a solid surface was studied. The
case in which the size of the relaxation zone exceeds considerahly the mean free path he-
tween the elastic collisions {suppressed exchange of translational and internal energies)
was considered. A smooth validity of the asymptotic expansion for the distribution func-
tion with defined assumptions was indicated. A solution for the zero-approximation equa-
tion and boundary conditions for the surface flow, based on this solution and generalized
model for a diffusive gas reflection from the surface were derived. The latter problem
was partially studied in [1] by the Grad method and in [2] in term s of an analysis of the
temperature jump.

A kinetic equation for polyatomic gases was obtained by formal generalization of the Boltzmann equa-
tion in (3] (reference from [4])). Using the notation of [4], we write

df, of, . 9f C L,
= Vigh = 2 S(jk . —fif) gul®l (2,0, ®) sin 0 d8dD A V; (1)

Jo k1

The index i denotes the inner quantum numbers {iI, iy, " characterizing the internal state of a mole-
cule. The intersections I Kl are the binary collision characteristics., For g = gii' let I i~ 0y, I kI o
and for gij * 8Ky ' Jkl~o12, oy and oy can depend on i, j; for this case it is not difficult to cenera_hze the
arguments.

Usually o,~0, ~0. Henceforth we distinguish two cases:
a) easy exchange of transglational and internal energies,

Gig ~ O (2)
h) suppressed exchange

C12 <0 (3)

We reduce Eq. (1) to a dimensionless form. For this besides the normal characteristics terms we
introduced the linear dimension L, which in case a) is a length, where the distribution function undergoes
a characteristic change, and in the case b) L - (nop)~'. In the case b) we obtain

d/i 1 rg . -
i L3 S — gt sinsdodoay, -
o et (4)
-t- 2 S (f'fi' — fifs) gl u”ﬁlllGded(DdV} -':—J{ + Ji
i, k1

e = {nol)~'<1, the sign £ denotes the sum with respect to transitions, with g= g’, whereas the sign Z' re-
fers to transitions with g #g'. In the case a) X' is multiplied by ¢~ .
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The information on the interaction mechanism of polyatomic gases with a solid surface is usually
confined to the accommodation coefficients and some adsorption features, For a simple gas a semiempiri-
cal model of mirror-diffusion reflection with different accommodation coefficients is a common approach.
By defining the boundary conditions for (4), we use the general functional relation, but the actual calcula-
tions are carried out for a generalized reflection diffusion model.

At the solid surface the following conditions should be fufilled:

It = D Vufy (5)

where the plus sign signifies the molecules leaving the surface, and the minus sign, those arriving at the

surface; Vij is the linear operator whose characteristics will be discussed below.

We shall seek the solution of Eq. (4) with condition (5) in the case ¢ — 0. With the method described
in [5] it is possible to separate the functional dependence offi on t{due to a tedious calculation this deriva-
tion will not be presented). The function f;, besides the terms, proportional to the powers of ¢, contains
terms that characterize the boundary effects and which are multiplied by exp{— e~!|x —x«|}, where x is the
coordinate of the point considered, while X is the intersection coordinate of the molecule trajectories ar-
riving at the point x from the surface. We introduce a local coordinate system at the surface by direct-
ing one of the axes along the normal to the surface n. It can be shown (see [5]) that the influence of condi-
tion (5) is concentrated in the region

(6)

—
T, X ¢

This region is called the Knudsen layer. The presence of a multiplier of order exp [-x /¢] leads to
the exponential absorption with & — 0 of the effect of the boundary on the distribution function in any fixed
internal flow point. The presence of a major parameter in front of the first sum in (4) (separating the in-
tegrals and sums from the number of collisions when the energy of the translation motion of the particles
does not exchange with the energy of the internal degrees of freedom) allows us to separate the fast and
slow processes which determine the evolution of the successive approximationsfi for ¢e— 0. The explicit
form of the zero and first approximations of the distribution function for the surface flow were obtained
in {6, 1] by different methods. The aim of the present work is to find a uniformly valid expansion of the
distribution function (for the surface flow and in the Knudsen layer) with respect to a small parameter. To
do this, following (7], we introduce a perturbed coordinate

(7

y=¢'z,
which is an argument of the distribution function.

By restricting ourselves to the stationary case, we write the Boltzmann equation in the form

dfy 1 i 1 Lo
dt-vTVnszji-:-Ji (8)
where
df o/, df,
-1 7 i i
2=V Ve (9)

When y takes a final value, we obtain the points of the Knudsen layer, when y— « (¢ — ( with a fixed
xn) the region of the surface flow. We seek the solution of Eq. (8) in the form

fi = 2™ (x, ) (10)

By inserting (10) into (8), for the successive approximations we have

8f4(°)
Vo= = Ji (5, 119) (1)

,{(0)

a/.(l)
S = T (5 £0) B I (RO: [O) + T (D f0) — —5

9y

(12)

Va

where Ji is the integral of the elastic collisions, Ji' is the integral of the inelastic collisions.
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Due to the linearity and the lack of dependence of the condition (5) on ¢ they are transposed without
changes in the successive approximations. We shall show that the equations for f; 1 with y — « develops into
the equations for the successive approximations in the surface flow [6], i.e., we shall show the uniform
validity of the expansion (10).

We introduce the notation
Ji= —vi (i) i + Ki (s 0 (13)
where

v = ES figilif ¢ sin0d 0 dd dY;

jke

o (14)
Ki(fis fo)= 2 Sf;;,fe,gij[ijm sin 6d0dd dV;
Ji ke
We reduce Eqgs. (11) and (12) to the form
a1,t™
Va 'r;.'l = = Vi (ffO) fi™ + Dy (15)
We can write (15) in the integral form for Vj, > 0 and correspondingly V<0
- v, 1 o.M () © v, n
£ () = ftm (0) exp 'L— ﬁyjl _\‘5 ! —oxp | — l.—;(y-— 5) | da {16)
0
o . 1
fim () = — \ s ) exp | - Py —2) dz (17)
AR Vo J

Y

Thefi(m)(()) are selected in such a way that the boundary condition (5) is fulfilled. We find the limiting values
of the integrals entering (16) and (17) for y— =

S .M () M

Ay = \—-———-]n( exp | ! ———(y—z)l dz
bt
3 (1)("')(

4=\ e [~ 9] e

With the substitution z: yt we obtain

1
o T

A1=y5 . exp)———y(i—t)]
]

('D(m)(yt) r v;
Az—'fls Fexp —ﬁy(i-—t)]dt
1

The integrands in these integrals are considerably different from zero for large y only in the region
1—t~14. Due to the multiplier y, A; and A, for y— « tend to a limztlslg value which is different from zero.
Assuming boundedness and continuity at an infinitely remote point 4’ and using the Laplace method [8],
we obtain that for y—«

Ay = v D™ (00), Ag = v 1D (00)
Hence it follows that
o™ (o0) ()/f’")
(m) i H .
R e B

1

By d1fferer1t1atmg (15) with respect to y, we can show by the same method that a derivative of any
order of f} (m) with respect to y also tends to zero asy—~«. If Eqs. (11, (12), ..., are compared by setting
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Bfi(m)/ay = 0 with the equations for the superficial flow derived in [6]. we obtain the uniform validity of the
expansion (10).

Let us analyze the zero approximation (11 with the condition at the boundary {(y= 0)

f(iO) == 2 V{j,f(jo) (18)
H

The limiting solution (y—«) of this problem is known; it satisfies the equation
Ji (@5 f19) =0

and is of the form [6])
L3 2 E,
w0 m VA . _omer
: —n(zm.r,) TLXP{ 2T, /.-T-.-} (19)
where m is the molecular mass. T, is the temperature of the translational degrees of freedom, T, is the
temperature of the internal degrees of freedom

}, n :23]}(1\-'

Ei
hT»

z = Xexp {—

c—=v—U, U _-_Lz,yivdv ’

n
i

n, u, T,, and T, are functions of the external coordinate x.

We calculate the integral

¥ I
1= 25 S Vo =5 (0 7 4 1) dv dy (20)
i0{v)
u ¥
I= ZS%SV,,]';‘”lnﬂ"’dv dy _-25 Q./‘(f,"’ Y o £ 4y dv dy (21)
L] (v) i 0(v)

The symmetry of direct and inverse collisions provides the result known from the proof of the H
theorem (4],

I<0 (22)

Furthermore

[ = Z[(Q) V[ 1 f@ dv] (233)

From (11) and the conditions of no-flow at the surface, it follows that u, = 0 for all y. Taking (19) into
account we let y—c in (23)

Yy
y=0

Iy— oc)=— 2[ S V.20 j‘,mdv] 'y ~0 (24)
1 (¥)

We introduce the notation
WV =fi(=Vay 2= fuigin P(¢) = @ (ng--Inf,; —1)
where fy;i is a positive function, even with respect to V;, and independent of y. that satisfies the conditions
(18). We specify the form of the operator V;;- The relation (18) links the distribution function of molecules,
reflected from the surface (we mark it with plus) with the distribution function of the incident (minus) mole-
cules, and includes the information on the interaction mechanism of a gas with the surface. The operator

Vij can be represented in the form

1 - 1 Y
T Vallow) = Ho(@) = 5~ {10l Ta(v, Vi) furesdv; (25)
/wf 'n"ID’O . <o)
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¢ = ?Hﬁcp,’ (26)

By taking into account the no-flow condition at the surface and the normalizing conditions of Tij with
respect to v, which can be written for any function of ¢, satisfying (26)

3\ Vafoudy = = 3 { Vit oty —0)dv =0 (27)
i W (V<0

we can write

= Zi)(v5

<0)

Vot {0 [CSHi(00) D] = P @) av (28)

k8

By substituting P(®.”) for ¢.  in (27), we have
i i

S\ Vel {SCHu (P (@)D — P (@)} dv = 0 , 29
i (V<o) ]

Eliminating P(¢;7) from (28) via (29) we finally obtain

i (V,<0)

=% S Vol wi {P [<§‘, Hy; (qvf):)] — SH (2] >} dv (30)

For ¢ >0,the second derivative of P with respect to ¢ is greater than zero, and consequently Pl¢) is
a convex function. For convex functions the generalized inequality of Jentzen is valid:

A

/Z S q{] (tv I) (])] ('T) dr 2 S q;) (tv 2‘) P [Q')] (I)] dz
2 ! :
d ( > g5t z)dz DVgyaz

]

for any qj; = 0.

Assuming

1
9> = 75| Vinl Tis (v, V) fuiy @ = ;"
wt

kg

and considering that /;,; satisfies the condition (18), we obtain for Vn =0

P [ Hs0) | < BcHy1P D (3)
~ i 7
The inequality (31) together with V =0 from (30) gives
I>0 132}
From (32} and (22) it follows that for all y
I=-0 (33)

The negative definiteness of expression [4]
NGO ) a1 © - 11 av
TS
gives an equation for fi(O)which holds for all y:

Sl 5 ) =0 (34)



From this it follows that function (19) is the unique solution for the problem (11), (18), while the para-
meters n, U, T,, and T, are independent of y. Hence the uniqueness theorem, proven for a pure gas in [9],*
is generalized for the case considered.

It should be pointed out that the assumption on the existence of f;, which is even with respect to Yo
is very important. Physically this assumption implies the existence of such a gas state near the surface in
which the distribution of molecules incident to and outgoing from the surface is the same. For a model of
mirror-diffusion reflection such a state is realized in equilibrium, while for other cases this assumption
should be verified, since without it the considerations lose their validity. We also note that the existence
of a unique solution for the zero approximation in the Knudsen layer narrows the scope of simulating the law
for the interaction of a gas with a surface and proves the hypothesis, put forward in [10], that the models
Tij and fi must agree near the solid surface.

In order to obtain the boundary conditions for the equations of the first approximation in surface flow
[61, we construct the actual model of the V1 operator. In [11} it was noted that the molecular mean free path
in an adsorbed layer depends on the internal state of the molecule {the idea of an adsorption gas-dynamic
laser arose from this). Furthermore, the short stay-time of the molecules in the adsorbed state and dif-
ferent relaxation rate of translational and internal energy leads to a known experimental difference between
the accommodation coefficients of translational and internal energy. This information permits us to gen-
eralize the diffusion law of reflection by introducing different accommodation coefficients for the internal
and translational energies of the molecules. We consider that the distribution of molecules reflected from
the surface at y= 0 (i.e., for V, >0) can be written in the form

3

fwi =n, (‘__17"__) Ilziexp f__ ’,n_bz_ . _’i’_._}
Ty, |z, \ " %Ty, T Ty,
E (35)
Tyw =00, Ty, =86, z, = Zexp(— T )

2w

where @ is the surface temperature, ¢ and g are the corresponding accommodation coefficients, n, is de-
termined from the surface no-flow conditions. From (35) and solutions for the zero approximations in the
Knudsen layer we have

u~0, T, =Ty <ab, T,=T, =§8 (36)

These conditions are similar to the normal conditions of adhesion in the dynamics of a viscous liquid.
Refinement of the conditions (36) associated with the glide and temperature jump effects appears in consid-
ering the subsequent approximation in which it is required to solve the linear inhomogeneous integrodiffer-
ential equation (12).
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